
Midterm Exam — Partial Differential Equations

Room 5161.0151, Tuesday 3 March 2015, 13:00 - 15:00

Duration: 2 hours

Instructions

1. The test consists of 4 questions; answer all of them.

2. The number of points for each question and each subquestion are given. 10 points are
“free”. The total number of points is divided by 10 to determine the final grade which
will be between 1 and 10.

3. The use of books and calculators is not allowed. You may use a piece of paper with
equations.

Question 1 (20 points)

Consider the equation

yux + xuy = 0 (1)

where u = u(x, y).

a. (10 pt) Find the general solution of Eq. (1).

b. (5 pt) Find the solution of Eq. (1) with the auxiliary condition u(0, y) = y2.

c. (5 pt) Sketch the characteristic curves of Eq. (1).

Solution

a. We solve the equation for the characteristic curves

dy

dx
=
x

y
.

This equation can be separated as

y dy = x dx,

and integrated to

1

2
y2 =

1

2
x2 + C,

where C is the constant of integration. Solving for the integration constant we get

2C = y2 − x2.

Since y2 − x2 is constant along the characteristic curves we conclude that the solution of
the problem has the general form

u(x, y) = f(y2 − x2),

where f is an arbitrary function (of one variable).

Page 1



b. Applying the general solution we find

u(0, y) = f(y2) = y2.

Therefore f(s) = s, and the solution we are after is

u(x, y) = y2 − x2.

c. The characteristic curves are the sets y2 − x2 = 2C for different values of C. For C = 0
we have y2 = x2, so y = ±x. For C 6= 0 we get families of hyperbolas as in the picture
below.
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Question 2 (20 points)

Consider the second order partial differential equation

uxx + 4uxy + 3uyy = 0. (2)

a. (5 pt) Classify Eq. (2) as elliptic, hyperbolic, or parabolic.

b. (15 pt) Find a linear transformation (x, y) → (s, t) such that Eq. (2) reduces to one of
the standard forms uss +utt = 0, uss−utt = 0, or uss = 0, depending on its type (elliptic,
hyperbolic, or parabolic).
Hint: one approach is to start by writing Eq. (2) using differential operators ∂x, ∂y and “completing

the square”.

Solution

a. We have a11 = 1, a22 = 3, and a12 = 2. Therefore

a212 > a11a22,

and Eq. (2) is hyperbolic.

b. We write Eq. (2) in the form

Lu = (∂2x + 4∂x∂y + 3∂2y)u = 0.

Then we have

L = ∂2x + 4∂x∂y + 3∂2y = ∂2x + 2∂x(2∂y) + (2∂y)2 − (2∂y)2 + 3∂2y = (∂x + 2∂y)2 − ∂2y .

We want to make a transformation so that

∂s = ∂x + 2∂y, ∂t = ∂y.

Then

L = ∂2s − ∂2t ,

and Eq. (2) becomes

Lu = uss − utt = 0,

which is the required form. We still need to determine the transformation.

Alternative 1
The required linear transformation has the general form

x = As+Bt, y = Cs+Dt.

We have

us = ux
∂x

∂s
+ uy

∂y

∂s
= Aux + Cuy,

and

ut = ux
∂x

∂t
+ uy

∂y

∂t
= Bux +Duy.
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Writing these relations in terms of differential operators we find

∂s = A∂x + C∂y, ∂t = B∂x +D∂y.

Comparing with the required relations

∂s = ∂x + 2∂y, ∂t = ∂y.

we find A = 1, C = 2, B = 0, D = 1. Therefore

x = s, y = 2s+ t.

Alternative 2
In matrix form we have (

∂s
∂t

)
=

(
1 2
0 1

)(
∂x
∂y

)
.

Therefore, the transformation we want is(
x
y

)
=

(
1 0
2 1

)(
s
t

)
,

or

x = s, y = 2s+ t.

Note that in order to go from the first matrix relation to the second one we interchanged
the place of the coordinates (from the left-hand side of the equation to the right-hand
side and vice versa) and transposed the matrix.

Page 4



Question 3 (25 points)

Consider the diffusion equation ut = kuxx with k > 0, 0 < x < `, t > 0, Neumann boundary
conditions ux(0, t) = g(t), ux(`, t) = h(t), and initial data u(x, 0) = ϕ(x).

a. (5 pt) Suppose that u1 and u2 are two solutions of the given diffusion equation and
define w = u1 − u2. Determine the partial differential equation satisfied by w, including
boundary conditions and initial data.

b. (10 pt) Given w from the previous subquestion, define the function

E(t) =
1

2

∫ `

0
[w(x, t)]2 dx.

Show that

dE

dt
≤ 0.

c. (10 pt) Use the result from subquestion (b) to show that for w defined in subquestion
(a) we have w = 0 and therefore u1 = u2.

Solution

a. The diffusion equation is linear. Since u1 and u2 is a solution, so must be w = u1 − u2.
Alternatively,

wt = (u1)t − (u2)t = k(u1)xx − k(u2)xx = kwxx.

Furthermore, for the boundary conditions we have

wx(0, t) = (u1)x(0, t)− (u2)x(0, t) = g(t)− g(t) = 0,

and

wx(`, t) = (u1)x(`, t)− (u2)x(`, t) = h(t)− h(t) = 0.

Finally, for the initial data we compute

w(x, 0) = u1(x, 0)− u2(x, 0) = ϕ(x)− ϕ(x) = 0.

Summarizing, w satisfies the diffusion equation wt = kwxx, with Neumann boundary
conditions wx(0, t) = wx(`, t) = 0, and initial data w(x, 0) = 0.

b. We compute

dE

dt
=

1

2

d

dt

∫ `

0
w2 dx =

1

2

∫ `

0

∂

∂t
(w2) dx =

1

2

∫ `

0
2wwt dx =

∫ `

0
wwt dx.

Using the fact that wt = kwxx we get

dE

dt
= k

∫ `

0
wwxx dx = k [wwx]x=`

x=0 − k
∫ `

0
(wx)2 dx = −k

∫ `

0
(wx)2 dx,

where in the last step we used the fact that wx|x=0 = wx|x=` = 0. Therefore

dE

dt
= −k

∫ `

0
(wx)2 dx ≤ 0,

since ∫ `

0
(wx)2 dx ≥ 0.
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c. We compute that

E(0) =
1

2

∫ `

0
[w(x, 0)]2 dx =

1

2

∫ `

0
02 dx = 0.

Since dE/dt ≤ 0 we conclude that E is a non-increasing function of t, therefore for t ≥ 0
we have E(t) ≤ E(0) = 0.
At the same time we have

E(t) =
1

2

∫ `

0
[w(x, t)]2 dx ≥ 0,

since it is the integral of a non-negative function.
The combination E(t) ≤ 0 and E(t) ≥ 0 gives E(t) = 0 for all t ≥ 0. The only way for
the integral

E(t) =
1

2

∫ `

0
[w(x, t)]2 dx,

to be zero, given that [w(x, t)]2 is a continuous function, is that

w(x, t) = 0

for all x ∈ (0, `). Therefore w = 0 and this implies u1 = u2.
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Question 4 (25 points)

Consider the eigenvalue problem −X ′′ = λX for 0 < x < ` with boundary conditions X ′(0) =
αX(0) and X ′(`) = αX(`) where α > 0.

a. (5 pt) Prove that λ = 0 is not an eigenvalue.

b. (15 pt) Compute the positive eigenvalues for this problem.

c. (5 pt) Give the corresponding eigenfunction for each positive eigenvalue.

Solution

a. For λ = 0 we have the equation X ′′ = 0 with solution X(x) = Cx+D. Then X ′(x) = C.
The boundary condition at x = 0 gives

C = αD.

The boundary condition at x = ` gives

C = α(C`+D)⇔ αD = α2`D + αD ⇔ α2`D = 0.

The only solution here is D = 0 which also gives C = αD = 0 and therefore the trivial
solution X(x) = 0 which is never an eigenfunction.

b. For λ > 0 we write λ = β2, β > 0. We then have the equation X ′′ +β2X = 0 with general
solution

X(x) = C cos(βx) +D sin(βx).

Then,

X ′(x) = −βC sin(βx) + βD cos(βx).

At x = 0 we find

βD = αC ⇔ C =
β

α
D.

At x = ` we find

−βC sin(β`) + βD cos(β`) = αC cos(β`) + αD sin(β`)

and substituting the value for C we get

−β β
α
D sin(β`) + βD cos(β`) = α

β

α
D cos(β`) + αD sin(β`).

Then we get

α2 + β2

α
D sin(β`) = 0.

The solution D = 0 is again rejected since then we also get C = 0 and the trivial solution
X(x) = 0. We are left with

sin(β`) = 0,

which gives the solutions

βn =
nπ

`
, n = 1, 2, 3, . . . .

The eigenvalues are

λn =
(nπ
`

)2
, n = 1, 2, 3, . . . .
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c. The eigenfunction Xn for the eigenvalue λn is given by

Xn(x) = C cos (βnx) +D sin (βnx) =
βn
α
D cos (βnx) +D sin (βnx) .

Substituting the value of βn we get

Xn(x) = D
[nπ
`α

cos
(nπx

`

)
+ sin

(nπx
`

)]
.

From an eigenfunction we can always drop any constant multiplicative factor (such as D
here) so, finally, the eigenfunctions are

Xn(x) =
nπ

`α
cos
(nπx

`

)
+ sin

(nπx
`

)
, n = 1, 2, 3 . . . .
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